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A New Analytical Model for the Prediction
of Vapor–Liquid Equilibrium Densities
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A new simple, predictive model for estimating both the vapor and the liquid
densities of fluids at the vapor–liquid equilibrium is presented. It is based on
the symmetry of the derivatives of the two saturation densities with respect
to the temperature, which is a consequence of applying the rectilinear diam-
eter law. No adjustable coefficients are involved, and only two parameters—
both with certain physical meaning—have to be calculated for each fluid.
The method used for these calculations is straightforward, the required inputs
being the critical temperature and density, and the value of the vapor and
liquid densities at a reference temperature. The results show that the model
is accurate for fluids of different kinds as long as the rectilinear diameter
law holds, and that, in general, the accuracy is better than that of the most
recent model with no adjustable coefficients.
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1. INTRODUCTION

The calculation of saturated densities of pure substances at vapor–liquid
equilibrium is essential for important practical applications, and serves
as the basis for calculating other properties [1, 2], such as, for example,
the surface tension [3, 4]. There are many accurate empirical correlations
giving the saturated liquid-density [1, 2]. The simplest are based on apply-
ing the corresponding-states method with the critical parameters and the
acentric factor as input data [1, 2, 5–11]. There are also proposals that
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include physical constants corresponding to each substance and at least
one adjustable parameter [11–14].

Studies of the accuracy and applicability of these models to different
kinds of fluids, generally in the temperature range where experimental data
are available, have led to recommendations for the use of various methods
[1, 2, 11, 13]. Obviously, correlations that include adjustable parameters
are more accurate than those without them. Nevertheless, their disadvan-
tage is the need for experimental data against which to evaluate these
adjustable parameters, with the concomitant relative lack of predictability.
In any case, it is very important to choose the appropriate model for a
given kind of fluid or even for a particular fluid at a particular temper-
ature [1, 2, 15]; i.e., there is no universal model that yields very accurate
results for all kinds of fluids. Results for the saturated vapor-density have
generally not been studied.

As a step in the search for a more universal model, Okrasin-
ski et al. [16] have proposed an analytical model that reproduces both
the vapor and liquid saturation densities at vapor–liquid equilibrium of
Lennard-Jones fluids obtained by Lotfi et al. [17] by computer simulation,
as well as of those obtained from equations of state [18–21]. The start-
ing point in constructing the model is the use of the rectilinear diameter
law and the temperature derivatives of the densities. The result is a simple
analytical expression with which these densities can be reproduced for any
temperature, even near the critical point [16, 21].

In the present work, we apply the Okrasinski et al. [16] method to
real fluids, suitably modifying the procedure to obtain the two parameters
in the analytical expression. One of these parameters is related to the slope
of the rectilinear-diameter equation, and the other to the location of the
critical point [17, 22]. Both parameters thus have physical meaning. Only
the critical temperature and density of the fluid and the value of the two
densities at a reference temperature are needed as input.

The model is then used to predict equilibrium densities for 29 flu-
ids of different kinds. The results are compared with those in the NIST
and DIPPR database [23, 24], the Reynolds’ book [25], and also with
those given by the most recent predictive correlation due to Mchaweh
et al. [11]. The results of the proposed model are not only compara-
ble to or even better than the latter, but are also independent of the
fluid under study (which is not the case with other simple models), if the
rectilinear-diameter law holds. In particular, it is known that simple flu-
ids and several interatomic model potentials [26] clearly fulfill this law.
Nevertheless, deviations have been observed for some fluids (water being
a clear example), especially near the critical point (see [27] and references
therein).
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The paper is organized as follows. First, we describe the proposed
model and the Mchaweh et al. [11] correlation. Second, the results are
given, and commented on. Finally, the main conclusions are presented.

2. MODEL FOR THE VAPOR–LIQUID SATURATION DENSITIES

The model of Okrasinski et al. [16] for Lennard–Jones fluids has a
threefold basis:

(i) The temperature derivatives of both the saturation vapor and the
liquid densities are symmetrical with respect to an axis located at
a distance from the temperature axis equal to the slope of the
rectilinear-diameter equation.

(ii) By reflecting one of the derivatives with respect to that symmetry
axis, the two derivatives can be fitted simultaneously.

(iii) Both saturation densities at the critical temperature must be
equal to the critical density.

Using the same procedure, we propose here the following analytical
expression for the temperature derivative of the vapor-density:

ρ̇V (T )=a + b

(TC −T )α
(1)

where TC is the critical temperature, and a, b, and α are coefficients [16].
The derivative for the liquid-density can be obtained from

ρ̇L (T )=2h− ρ̇V (T ) (2)

where h is the slope of the rectilinear diameter, which can be obtained
from a knowledge of the critical density and temperature (ρC and TC) and
the saturation densities at a reference temperature (T0, ρV0, ρL0):

h= ρC − (ρV0 +ρL0)/2
TC −T0

(3)

To obtain the final analytical expression, the derivatives must be inte-
grated, which again requires the same reference data:

ρV (T )=ρV0 + ∫ T

T0
ρ̇V (T )dT

ρL (T )=ρL0 + ∫ T

T0
ρ̇L (T )dT

(4)

Our aim is to apply Eq. (1) to real fluids by establishing a straightfor-
ward procedure to fix the values of the coefficients from a knowledge of
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the critical temperature and density and the two densities at a reference
temperature.

The first step is to take into account that the coefficient α is related to
the critical exponent of the densities [28, 29], β. We propose the following
simple relationship:

α =1−β (5)

However, since data are needed for the two densities near the criti-
cal point to determine the value of β, the model will not be predictive.
We here, therefore, take a fixed value β = 1/3, which is an average value
proposed some time ago by Guggenheim [28, 29]. The value of α is there-
fore also fixed, α = 2/3, for all the fluids studied. Obviously, this means
that there will be deviations in the calculation of densities near the critical
point for those fluids for which β differs from this value. The advantage of
taking a fixed value is that the model is predictive and simple, and, as will
be shown below, yields good results for different kinds of fluids.

The coefficient b in Eq. (1) must be related to the slope of the recti-
linear diameter. In seeking to establish a simple procedure to estimate this
coefficient, we studied its behavior for several fluids in relation to the well-
known behavior for Lennard–Jones fluids [17–22]. We observed the follow-
ing simple relationship:

b=k T α−1
C ρC (6)

with k given by known quantities for the Lennard–Jones fluid:

k =−hLJ T 1−α
C−LJρ

−1
C−LJ (7)

where hLJ, TC−LJ, and ρC−LJ are values, in reduced units, of the slope of
the rectilinear diameter and the critical properties for Lennard–Jones flu-
ids [17, 22]. Thus, by using the Lotfi et al. [17] data (TC−LJ = 1.31 and
ρC−LJ = 0.314) one obtain hLJ = −0.18075. With fixed α = 2/3, this gives
k = 0.629885. If the more recent data of Potoff and Panagiotopoulos [22]
are preferred (TC−LJ =1.312 and ρC−LJ =0.316), then k =0.626185. Values
for the obtained saturation densities are practically identical, so we have
chosen k =0.629885 in our calculations.

Finally, the coefficient a in Eq. (1) is obtained by taking into account
that the two densities must be equal to the critical density at the critical
temperature, so that

a = ρC −ρV0

TC −T0
− b (TC −T0)

−α

1−α
(8)
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The final general expressions for the two saturation densities are

ρV (T )=ρV0 +a (T −T0)−
b
[
(TC −T )1−α − (TC −T0)

1−α
]

1−α
(9a)

ρL (T )=ρL0 + 2h (T −T0)−a (T −T0)

+
b
[
(TC −T )1−α − (TC −T0)

1−α
]

1−α
(9b)

where T is in K, and the densities are in mol ·L−1.
In summary, for a given fluid, the critical temperature and density

and the coexistence densities at a reference temperature are the needed
input parameters. Since all the coefficients and properties, except the tem-
perature, are constants for a given fluid, the resulting expression for each
fluid is simple, and can be applied straightforwardly. Indeed, for a given
fluid and for α =2/3, the final expressions are

ρV (T )=ρC −a (TC −T )−3b (TC −T )1/3

ρL (T )=ρC + (a −2h) (TC −T )+3b (TC −T )1/3
(10)

where a, b, and h are obtained from Eqs. (8), (6), and (3), respectively.
Note that the expression for the liquid density given in Eq. (10) is

very similar to the model proposed by Reid et al. [1]. A clear difference
is that our proposal does not include any coefficient obtained from fits to
experimental data.

In order to study the suitability of the proposed model, we compared
it with a recent model [11] for the saturated liquid density that uses the
corresponding-states principle and involves no adjustable coefficients for
a fluid, with the critical temperature and density and the acentric factor
being the required inputs. This model was proposed by Mchaweh et al.
[11], and is based on an earlier proposal of Nasrifar and Moshfeghian
[12]. The main difference is that whereas the latter involves three adjust-
able coefficients for each fluid, the former uses the Soave–Redlich–Kwong
equation of state temperature-dependent term, and hence no adjustable
coefficients. In both cases, however, an adjustable coefficient is required for
each fluid in order to significantly improve the accuracy of the models.
For the purpose of comparison with our predictive model, we shall use
Mchaweh et al.’s model but without including that adjustable coefficient.
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Following their notation, we denote this model the simplified-Nasrifar-
Moshfeghian-0 (SNM0) correlation. Its analytical expression is

ρL(T )=ρC

(
1+1.169τ 1/3 +1.818τ 2/3 −2.658τ +2.161τ 4/3

)
(11)

where τ is a temperature-dependent variable defined by

τ =1− (T /TC)/
[
1+m(1−

√
T/TC)

]2
(12)

where m is defined as in the Soave–Redlich–Kwong equation of state:

m=0.480+1.574ω−0.176ω2 (13)

with ω being the acentric factor.
Mchaweh et al. [11] use the SNM0 model, Eqs. (11–13), to predict

the saturated-liquid density of a great number of fluids of different clas-
ses. They show that the SNM0 model gives practically the same overall
accuracy as the original Nasrifar–Moshfeghian [12] model. Obviously, the
deviations are low when an adjustable parameter is used.

The SNM0 model can be therefore compared with that proposed
here, Eq. (9), because it is accurate, contains no adjustable coefficients, and
needs three input parameters. Obviously, for this model, the rectilinear-
diameter law must also be applied to obtain the vapor-density, so that the
data at some reference temperature must be also known.

3. RESULTS AND DISCUSSION

We applied the proposed method to obtain the saturated-vapor and
-liquid densities for 29 fluids of different kinds, including some of inter-
est as alternative refrigerants. In all cases, and as a first choice, we opted
to use as input the saturation densities given for the lowest temperature
reported by the NIST database [23], which is practically identical to the
triple-point temperature. The other input parameters, such as the criti-
cal properties and the acentric factor, were either taken from that data-
base or from the DIPPR database [24]. The model was then applied over
the entire temperature range, and the results were compared with those
reported by the NIST database [23] for both densities, as well as with the
DIPPR [24] data for the liquid density and the Reynolds [25] data for
the vapor-density. The data are very similar, although the last two refer-
ences generally involve a shorter temperature range. Comparison is also
made with the values obtained using the SNM0 model, Eqs. (11–13), and
the rectilinear-diameter law. The analysis took into account the results for



Model for Prediction of Vapor–Liquid Equilibrium Densities 1441

both saturation densities, i.e., we did not focus solely on the liquid satu-
ration density.

For some fluids, our model and SNM0 both gave very good, and
qualitatively indistinguishable, results. Examples of these fluids were eth-
ane, butane, pentafluoroethane (R125), carbon monoxide, carbon dioxide,
and ethene. The results for the last two fluids are shown in Figs. 1 and
2 by way of illustration. Density–temperature curves and absolute devia-
tion (calculated density minus experimental density) plots with respect to
the DIPPR (for the liquid-density) and Reynolds (for the vapor-density)
data are shown. As can be seen, our model and SNM0 gave very sim-
ilar results for the vapor densities. Greater differences are observed for

Fig. 1. VLE densities for carbon dioxide. (a) Density–temperature curve: (◦) data from
NIST [23]; (×) data from DIPPR [24] for the liquid-density and Reynolds [25] for the vapor-
density; solid lines are our model, Eq. (9), and dashed lines the SNM0 model [11], Eqs. (11–
13). Temperatures are in K and the densities in mol·L−1. (b) Absolute deviations (experi-
mental density minus calculated density) at each temperature with respect to DIPPR data
for the liquid-density. (c) Absolute deviations with respect to the Reynolds data for the
vapor-density. (Triangles: SNM0 model, squares: our model).
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Fig. 2. VLE densities for ethene. Key as in Fig. 1.

the liquid densities, although the deviations are small in both cases. For
ethene (Fig. 2), the SNM0 model reproduces the liquid-density better for
intermediate and high temperatures.

For the simplest fluids, such as argon, krypton, xenon, neon, oxygen,
nitrogen, and methane, the SNM0 model performed better near the critical
point, whereas our model was better near the triple point. Examples are
shown in Figs. 3 and 4. One observes that, for these fluids at high temper-
atures, our model overestimated the liquid-density and underestimated the
vapor-density. The same was the case with the SNM0 model at low tem-
peratures, where the relative deviations for the vapor-density are extremely
high. The more extreme case was found for neon (Fig. 4).

Obviously, the above results are a consequence of the analytical form
and the input parameters required for each model. First, the SNM0
includes a more complex temperature dependence which allows it to more
adequately represent the behavior of the densities near the critical point.
Our model has a pre-set critical exponent, and therefore for some fluids,
deviations were found near the critical point, although in no case were
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Fig. 3. VLE densities for methane. Key as in Fig. 1.

these deviations large. Second, since our model includes the triple-point
data directly as input, its representation is good near this point, whereas
the introduction of the triple point data in the SNM0 model is made indi-
rectly through the rectilinear-diameter law.

Another important characteristic of our model is its versatility. Thus,
results for a specific class of fluids could be improved by taking specific
values of α or β for these fluids. The accuracy of our model near the crit-
ical point can be also improved by using a higher reference temperature.
Nevertheless, the results would then be poorer at low temperatures. In any
case, we do not consider these possibilities here, since the aim of the pres-
ent work was the construction of a general model.

There are other fluids for which, although the SNM0 model works
adequately, our model improved the results at low temperatures and
behaved equally as well as SNM0 near the critical temperature. Exam-
ples were propane, pentane, hexane (Fig. 5), isobutane, 1-chloro-1,2,2,2-
tetrafluoroethane (R124), 2,2-dichloro,1,1,1-trifluoroethane (R123), 1,1,1,
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Fig. 4. VLE densities for neon. Key as in Fig. 1.

2-tetrafluoro-ethane (R134a), and chlorodifluo-romethane (R22; Fig. 6).
As can be seen in Figs. 5 and 6, for these fluids the SNM0 model
clearly underestimates the liquid-density near the triple point. In particu-
lar, for the refrigerant R22 the two models gave qualitatively similar results
near the critical point, although our model led to smaller deviations with
respect to experimental data (Fig. 6).

Finally, we found that our model was a clear improvement over
SNM0 for other fluids including heptane, propene, fluorine, nitrogen triflu-
oride, difluoromethane (R32), 1,1,1-trifluoroethane (R143a), 1,1-difluoroe-
thane (R152a), and ammonia. Four examples are shown in Fig. 7, where
only the NIST data are included because the data from the other sources
are very similar. One observes that SNM0 worked well only over a narrow
temperature range around the critical point. Moreover, SNM0 sometimes
overestimated the saturation liquid-density, e.g., for fluorine (Fig. 7b), and
at other times underestimated that property, as in the cases of the fluids
shown in Fig. 7a, c, and d. One also observes that the greatest deviations
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Fig. 5. VLE densities for hexane. Key as in Fig. 1.

given by our model were located at the liquid-density and at high temper-
atures (not very close to the critical temperature).

In sum, Figs. 1–7 show that the present model performed in a
similar way, independently of the substance being considered. For some
substances, it deviated near the critical point, and for others at high tem-
peratures. For most of the substances, however, it presented an adequate
qualitative behavior over the whole temperature range. This was not the
case for the SNM0 model, which sometimes underestimated and at other
times overestimated the liquid-density, and moreover seemed to be clearly
inadequate for some fluids near the triple temperature.

4. CONCLUSIONS

We have described a new model for predicting both the vapor and liq-
uid densities of fluids at vapor–liquid equilibrium. The model is based on
considering the temperature derivatives of the two densities, and applying
the rectilinear-diameter law. By fixing the critical exponent at a constant
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Fig. 6. VLE densities for chlorodifluoromethane (R22). Key as in Fig. 1.

value, the model involves only two parameters for each fluid, both of
which have physical meaning. These can be calculated straightforwardly
from a knowledge of the critical temperature and density, and of the satu-
ration densities at one reference temperature. The model is therefore both
simple and predictive. Results for different kinds of fluids were compared
with those obtained with a recent and accurate model that predicts the sat-
uration liquid-density—the SNM0 model proposed by Mchaweh et al. [11]
– for which the acentric factor has to be added as an input parameter, and
with data taken from the NIST database [23].

For some fluids, the predictions of our model were identical to those
of the accurate SNM0 one. In other cases, our model improved the clas-
sical results slightly at low temperatures, and yielded equal or slightly
poorer results at intermediate temperatures. This was because we chose the
lowest temperature as the reference in constructing the model. The results
can be improved for any given temperature range by taking an appro-
priate reference temperature. Also, the results near the critical point can
be improved by using a specific substance-dependent value for the critical
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Fig. 7. VLE densities for (a) propene, (b) fluorine, (c) difluoromethane (R32), and (d)
ammonia. Key as in Fig. 1.

exponent. The model can thus be adapted to reproduce different kinds of
behavior. Indeed, we showed that, even with a fixed reference temperature
and critical exponent, the model is adequate (although obviously not per-
fect) even for those fluids for which SNM0 is less accurate. Obviously, the
main limitation of the model is that the linear diameter law must hold for
the fluids to which it is applied.

In sum, our model predicts saturation densities with an accuracy that
is comparable to or even better than that obtained using a very recent and
accurate model. Moreover, the adequacy of the results does not depend on
which fluid is being studied (unlike the case with the other simple mod-
els), as long as the rectilinear-diameter law holds (which is not the case
for water, for example).
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